83 research outputs found

    Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations

    Get PDF
    Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manipulate large, dense and unstructured kernel matrices. Despite the fact that at the core of training a SVM there is a \textit{simple} convex optimization problem, the presence of kernel matrices is responsible for dramatic performance reduction, making SVMs unworkably slow for large problems. Aiming to an efficient solution of large-scale nonlinear SVM problems, we propose the use of the \textit{Alternating Direction Method of Multipliers} coupled with \textit{Hierarchically Semi-Separable} (HSS) kernel approximations. As shown in this work, the detailed analysis of the interaction among their algorithmic components unveils a particularly efficient framework and indeed, the presented experimental results demonstrate a significant speed-up when compared to the \textit{state-of-the-art} nonlinear SVM libraries (without significantly affecting the classification accuracy)

    Nonlocal PageRank

    Full text link
    In this work we introduce and study a nonlocal version of the PageRank. In our approach, the random walker explores the graph using longer excursions than just moving between neighboring nodes. As a result, the corresponding ranking of the nodes, which takes into account a \textit{long-range interaction} between them, does not exhibit concentration phenomena typical of spectral rankings which take into account just local interactions. We show that the predictive value of the rankings obtained using our proposals is considerably improved on different real world problems

    A regularized Interior Point Method for sparse Optimal Transport on Graphs

    Full text link
    In this work, the authors address the Optimal Transport (OT) problem on graphs using a proximal stabilized Interior Point Method (IPM). In particular, strongly leveraging on the induced primal-dual regularization, the authors propose to solve large scale OT problems on sparse graphs using a bespoke IPM algorithm able to suitably exploit primal-dual regularization in order to enforce scalability. Indeed, the authors prove that the introduction of the regularization allows to use sparsified versions of the normal Newton equations to inexpensively generate IPM search directions. A detailed theoretical analysis is carried out showing the polynomial convergence of the inner algorithm in the proposed computational framework. Moreover, the presented numerical results showcase the efficiency and robustness of the proposed approach when compared to network simplex solvers

    Euler-Richardson method preconditioned by weakly stochastic matrix algebras : a potential contribution to Pagerank computation

    Get PDF
    Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random walk since the computation of the Perron vector x of S can be tackled by solving a suitable M-matrix linear system Mx = y, where M = I − τ A, A is a column stochastic matrix and τ is a positive coefficient smaller than one. The Pagerank centrality index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the Euler- Richardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties discussed. Numerical tests performed on real-world datasets are presented, showing the advantages given by the use of the proposed Householder-Richardson method

    Shanks and Anderson-type acceleration techniques for systems of nonlinear equations

    Full text link
    This paper examines a number of extrapolation and acceleration methods, and introduces a few modifications of the standard Shanks transformation that deal with general sequences. One of the goals of the paper is to lay out a general framework that encompasses most of the known acceleration strategies. The paper also considers the Anderson Acceleration method under a new light and exploits a connection with quasi-Newton methods, in order to establish local linear convergence results of a stabilized version of Anderson Acceleration method. The methods are tested on a number of problems, including a few that arise from nonlinear Partial Differential Equations

    Diazo transfer for azido-functional surfaces

    Get PDF
    Preparation of azido-functionalized polymers is gaining increasing attention. We wish to report an innovative, novel strategy for azido functionalization of polymeric materials, coupling plasma technology and solution processed diazo transfer reactions. This novel approach allows the azido group to be introduced downstream of the material preparation, thus preserving its physicochemical and mechanical characteristics, which can be tailored a priori according to the desired application. The whole process involves the surface plasma functionalization of a material with primary amino groups, followed by a diazo transfer reaction, which converts the amino functionalities into azido groups that can be exploited for further chemoselective reactions. The diazo transfer reaction is performed in a heterogeneous phase, where the azido group donor is in solution. Chemical reactivity of the azido functionalities was verified by subsequent copper-catalyzed azide-alkyne cycloaddition
    • …
    corecore